Product category
劉細鳳
安科瑞電氣股份有限公司 上海嘉定 201801
摘要:針對現(xiàn)有消防系統(tǒng)維護成本高、安裝困難、數(shù)據(jù)利用率低等問題,設計一種基于窄帶物聯(lián)網(wǎng)(NB- IoT)的智慧消防系統(tǒng)。采用STM32L151作為主控芯片,將GY-906型溫度傳感器、CX-1088型光電煙霧傳感器和 HK1100C型水壓傳感器采集的溫度、煙霧、水壓等信息通過NB-IoT網(wǎng)絡上傳至云端服•務器,將數(shù)據(jù)利用樸素貝葉 斯算法進行數(shù)據(jù)融合后以可視化的方式呈現(xiàn)。經(jīng)測試,該系統(tǒng)可以及時反饋消防信息,協(xié)助消防部門掌控火災狀況。
關鍵詞:智慧消防系統(tǒng);窄帶物聯(lián)網(wǎng);數(shù)據(jù)融合;可視化;STM32L151 ;傳感器
0引言
隨著我國經(jīng)濟的快速發(fā)展,建筑逐漸向高層、高密度、 功能綜合化等方向發(fā)展。建筑構(gòu)造愈加復雜,導致安防問題 層出不窮。據(jù)統(tǒng)計,我國高層建筑34.7萬幢,其中近一半的 消防設施不到位,消防設施平均完好率小于百分之50„得益于物聯(lián)網(wǎng)技術(shù)的發(fā)展,智慧消防系統(tǒng)應運而生,解決了消防信 息資源共享、自動化信息處理等問題。
目前,國內(nèi)學者對智慧消防系統(tǒng)提供了多種研究方法和 思路:曹元軍等人提出的基于大型消防物聯(lián)網(wǎng)與互聯(lián)網(wǎng)融合 的智慧消防系統(tǒng),闡述了消防物聯(lián)網(wǎng)與互聯(lián)網(wǎng)融合的體系框 架,分析了構(gòu)建智慧消防系統(tǒng)的關鍵技術(shù)山;李卿等人提出 了基于無線傳感器網(wǎng)絡的消防報警系統(tǒng),介紹了無線傳感器 網(wǎng)絡技術(shù)應用于消防報警系統(tǒng)的實施方案,實現(xiàn)了節(jié)點通過 傳感器地對環(huán)境參數(shù)進行采集、處理和傳送,通過 采集節(jié)點信息和操縱控制平臺同時進行險情預警図。但其傳 輸層采用 WiMax (Worldwide Interoperability for Microwave Access,全球互通微波訪問)、ZigBee等協(xié)議進行數(shù)據(jù)傳輸, 節(jié)點之間通過RF (Radio Frequency,射頻)模塊進行通信, 傳輸過程不穩(wěn)定且功耗高。單個節(jié)點傳感器采集數(shù)據(jù)并直接 計算分析,將結(jié)果上傳至控制,不具備數(shù)據(jù)綜合利用與 分析的優(yōu)勢。
NB-IoT (Narrow Band Internet of Thing,窄帶物聯(lián)網(wǎng)) 具備覆蓋廣、容量大、成本低、功耗低、架構(gòu)優(yōu)等特點。因此,使用窄帶物聯(lián)網(wǎng)技術(shù)的消防系統(tǒng)融合了消防物聯(lián)網(wǎng) 與互聯(lián)網(wǎng),成為當前研究的趨勢之一。本文設計了基于NB- IoT的智慧消防系統(tǒng),采用STM32微處理器作為主控芯片, 使用煙霧傳感器、溫度傳感器、水壓傳感器實時采集數(shù)據(jù)并 打包上傳云處理,完成數(shù)據(jù)分析與融合,經(jīng)由可視化界 面呈現(xiàn),實現(xiàn)傳感器無線部署、數(shù)據(jù)實時采集、數(shù)據(jù)綜合處理、 可視化協(xié)助決策和設備自動監(jiān)管等功能.
1系統(tǒng)功能與結(jié)構(gòu)
該系統(tǒng)采用分層設計思想,將系統(tǒng)分為傳感器節(jié)點、虛 擬服務器和客戶端,系統(tǒng)架構(gòu)如圖1所示。
圖1系統(tǒng)整體設計框圖
數(shù)據(jù)采集模塊由GY-906型煙霧傳感器群、CX-1088型 溫度傳感器群、HK1100C型水壓傳感器群組成,可實現(xiàn)對環(huán) 境數(shù)據(jù)的實時采集。
主控芯片STM32L151微處理器通過ADC (Analog-to- Digital Converter,模數(shù)轉(zhuǎn)換)或 FC (Inter-Integrated Circuit, 集成電路總線)協(xié)議完成對于底層傳感器數(shù)據(jù)的采集并分析。
通信模塊采用NB-IoT將數(shù)據(jù)包上傳至云服務器,實現(xiàn) 數(shù)據(jù)轉(zhuǎn)發(fā)。通信模塊將傳感器采集的數(shù)據(jù)先發(fā)送至物聯(lián)網(wǎng)網(wǎng) 關,再上傳至云端服務器。
云端服務器是系統(tǒng)智能處理,實現(xiàn)數(shù)據(jù)預處理,數(shù) 據(jù)融合,完成指令的下發(fā)和報警,當用戶請求時訪問數(shù)據(jù)庫, 為可視化提供數(shù)據(jù)支撐。
客戶端層通過Web向各類聯(lián)網(wǎng)設備提供服務,包括用戶 終端監(jiān)測、消防部門報警和物業(yè)部門監(jiān)測。Web端通過云端 服務器與數(shù)據(jù)庫進行數(shù)據(jù)交互,實現(xiàn)交互式可視化界面,為 用戶決策提供信息.
2系統(tǒng)硬件設計
本系統(tǒng)硬件電路主要由4個部分組成:主控芯片、NB- IoT通信模塊、電源電路模塊和數(shù)據(jù)采集模塊。節(jié)點中主 控芯片的通信串口與NB-IoT模塊通信串口相連接,GPIO (General-purpose input/output,通用輸入輸出端口)與 PWRKEY相連,主控芯片通過輸出高低電平使能控制NB- IoT模塊。主控芯片的GPIO連接低功耗電源電路模塊的使 能開關,通過輸出高低電平使能。數(shù)據(jù)采集根據(jù)不同端口連 接主控芯片的I2C通信端或GPIO模塊回。
2.1電源電路設計
電源電路分為電池穩(wěn)壓電路,數(shù)據(jù)采集模塊供電電路。 其中電池穩(wěn)壓電路與電池直接相連,提供3.3 V的輸出電壓, 為主控模塊、NB-IoT通信模塊等供電。數(shù)據(jù)采集供電模塊 的輸入端與電池穩(wěn)壓電路輸出端相連,使能端與主控芯片 相連。電池穩(wěn)壓電路如圖2所示,所采用的TSP601230為一種同步升壓轉(zhuǎn)換器,輸入電壓為23?5.5 V,輸出電壓3 2.5?5.5 V,在低負載期間TPS6123自動進入省電模式,待 機電流僅為0.5必。穩(wěn)壓電路中EN端高電平使能;SS端為 芯片啟動延時端,一旦電容電壓達到輸入電壓值,芯片開始 工作;SW端為轉(zhuǎn)換引腳,連接到芯片內(nèi)部的電力場效應晶 體管的漏;PG引腳為開漏輸出,額定吸收電流達500 nA, PG輸出需要一個上拉電阻,且EN高電平使能;FB端為電 流反饋輸入,通過外部電阻分壓調(diào)整輸出值;輸出端VOUT 為主控芯片供電,通過R, &進行分壓,實現(xiàn)要求的輸出值 K,計算公式如下:
數(shù)據(jù)采集模塊供電電路如圖3所示,所采用的ME6211 系列的低壓差線性穩(wěn)壓器其輸入電壓為2.0?6.5 V,輸出 電壓為1.8?5.0 V, EN為使能管腳,接高電平時芯片正常工作。其中,ME6211C18M5G芯片輸出1.8 V為煙感中 的(紅外LED)供電,ME6211C33M5G芯片輸出3.3 V, 為溫度傳感器和煙霧傳常工作。其中,ME6211C18M5G芯片輸出1.8 V為煙感中 的(紅外LED)供電,ME6211C33M5G芯片輸出3.3 V, 為溫度傳感器和煙霧傳
圖3 數(shù)據(jù)采集模塊供電電路
2.2 NB-IoT通信模塊電路
NB-IoT通信模塊電路所采用的BC26- LPWA模塊為LCC貼片封裝,支持(UDP/TCP/MQTT/ LwM2M)等協(xié)議棧四,支持LTE Cat NB1頻段,發(fā)射功率 為23 dBm,且PSM模式下典型耗流為3.5 pA。
2.3 數(shù)據(jù)采集模塊設計
本文中光電煙霧傳感器選用迷宮紅外光電煙霧傳感器 CX-1088,該傳感器具有靈敏度高、感應范圍大、功耗低等 優(yōu)點。需要探測煙霧濃度時,主控芯片的PB7輸出高電平, 煙霧傳感器工作,并輸出模擬量,主控芯片對模擬信號進行 數(shù)模轉(zhuǎn)換并進行自適應均值濾波后存入數(shù)據(jù)隊列中吐 溫度 傳感器選用非接觸式紅外溫度傳感器GY-906. GY-906具有 分辨率高、探測范圍大、可靠性高等優(yōu)點,且其內(nèi)部集成了 紅外探測熱電堆芯片與信號處理芯片,能將熱信號處理 并校準后轉(zhuǎn)換為數(shù)字信號通過I2C協(xié)議直接輸出到主控芯片。
3 系統(tǒng)軟件設計
本文的軟件設計平臺為Keil和Matlab 2016b<,采用Keil 軟件設計STM32的底層驅(qū)動程序和主程序,Matlab實現(xiàn)數(shù) 據(jù)融合,二者均采用模塊化設計。
3.1傳感器節(jié)點驅(qū)動程序設計
由于傳感器節(jié)點采用一次性鋰亞電池供電,所以需要降低系統(tǒng)功耗,故編寫驅(qū)動層,以主程序確保調(diào)用相 應的硬件資源時,不會獨占操作系統(tǒng)時間片,從而提高系統(tǒng) 運行效率,降低傳感器節(jié)點工作能耗。本傳感器驅(qū)動層體系。
AI指令模塊將NB-IoT模塊的AT指令集封裝為對應的 命令,便于Main函數(shù)的直接調(diào)用。Queue模塊將不同數(shù)據(jù) 以 JSON (JavaScript Object Notation, JS 對象簡譜)的格式 存儲到特殊內(nèi)存單元中,使主控芯片STM32休眠時依然能 保存數(shù)據(jù);Queue模塊封裝了隊列基本操作。DMA (Direct Memory Access,直接內(nèi)存存?。┠K直接讀取ADC模塊、 FC模塊上數(shù)據(jù)采集模塊的數(shù)據(jù),并將該數(shù)據(jù)傳送給Queue 模塊處理。GPIO模塊通過輸出高低電平控制數(shù)據(jù)采集模塊、 NB-IoT模塊電源的開關。定時器模塊定時喚醒ADC模塊與 DMA模塊。RTC (Real-Time Clock,實時時鐘)模塊用于 提供描述數(shù)據(jù)的實際時間。休眠模塊通過調(diào)用GPIO模塊關 閉外部模塊電源,并關閉主控芯片內(nèi)部除RTC源與內(nèi)存?zhèn)?份區(qū)外的硬件資源。
3.2傳感器節(jié)點主程序設計
主程序控制傳感器節(jié)點的各個硬件部分分時工作,且在數(shù)據(jù)無異常的情況下,傳感器 將保持靜默,不向服務器上傳數(shù)據(jù),以降低傳感器節(jié)點功耗。主程序首先對傳感器節(jié)點初始化,初始化 主要包括驅(qū)動層初始化,NB-IoT網(wǎng)絡初始化。隨后對工作 參數(shù)進行設置。工作參數(shù)主要包括數(shù)據(jù)上報間隔、休眠間隔、 報警閾值等參數(shù)。之后打開數(shù)據(jù)采集模塊電源并采集數(shù)據(jù)并分析,如果數(shù)據(jù)超過報警閾值,傳感器節(jié)點將打開蜂鳴器向 用戶報警,并喚醒NB-IoT模塊,向服務器發(fā)出警告并上傳 異常數(shù)據(jù),傳感器節(jié)點將重復數(shù)據(jù)采集與數(shù)據(jù)上傳工作,直到警報解除;如果數(shù)據(jù)未超過報警閾值,傳感器節(jié)點將數(shù)據(jù) 壓入數(shù)據(jù)隊列、關閉各數(shù)據(jù)采集模塊電源,并使主控芯片進 入休眠狀態(tài),到達喚醒時間后喚醒主控芯片,重復下一輪的數(shù)據(jù)采集。
3.3服務器端設計
本系統(tǒng)服務器端采用B/S架構(gòu),系統(tǒng)主要 分為客戶端層、應用服務層和數(shù)據(jù)庫服務叫客戶端界面。
客戶端層是指用戶使用瀏覽器來操作的部分,使用瀏覽 器進行操作具有跨平臺的優(yōu)勢,無論是移動設備,還是PC 設備都能進行操作。使用瀏覽器不需要專門的客戶端軟件。 該層主要完成的操作為用戶管理、設備管理、數(shù)據(jù)管理與可 視化儀表盤。
應用服務層采用前后端分離的設計思路,前端以提供可 視化的操作界面,用于支撐客戶端層的功能。后端服務執(zhí)行 各項業(yè)務邏輯,業(yè)務邏輯封裝成API接口,API接口設計采 用RESTfUlAPI架構(gòu),便于二次開發(fā)前后端通過Axios模塊 來調(diào)用API接口完成數(shù)據(jù)交互。
由于數(shù)據(jù)需要NB模塊只能訪問電信的服務 器,需要完成北向應用對接。服務器上傳CA證書到物聯(lián)網(wǎng) 平臺用于身份識別,所以使用HTTPS為通信協(xié)議。后端業(yè) 務通過調(diào)用的API與物聯(lián)網(wǎng)平臺完成對接,物聯(lián)網(wǎng)平臺 提供了基礎API包和公用事業(yè)(NB-IoT) API包,在平臺 上創(chuàng)建應用后會獲得應用ID和密鑰,這個ID與密鑰是獲取 AccessToken (鑒權(quán)令牌),每次調(diào)用API都需數(shù)據(jù)庫服務層包含數(shù)據(jù)的查詢、處理與可視化,采用的 數(shù)據(jù)庫系統(tǒng)是MongoDB,該數(shù)據(jù)庫系統(tǒng)具備執(zhí)行查詢速度 快、支持高并發(fā)、具有敏捷性和可擴展性的優(yōu)點姬。采用 Mongoose庫操作數(shù)據(jù)庫實現(xiàn)查詢、更新、刪除等操作。
3.4數(shù)據(jù)融合設計
本系統(tǒng)為了對環(huán)境進行感知,采集溫度、濕度、水壓、 煙霧濃度等多種數(shù)據(jù),構(gòu)成異構(gòu)數(shù)據(jù)庫。為求解環(huán)境火災風 險值,需要對異構(gòu)數(shù)據(jù)進行數(shù)據(jù)融合。本系統(tǒng)數(shù)據(jù)融合流程。首先對數(shù)據(jù)庫中的溫度、濕度、水壓、煙霧濃 度等數(shù)據(jù)進行濾波,平滑數(shù)據(jù)中的噪聲和采集誤差;然后通 過時間軸對準,實現(xiàn)異構(gòu)數(shù)據(jù)的同步;再計算通過特征提取 模塊的數(shù)據(jù)的貝葉斯概率,作為風險值,存入數(shù)據(jù)庫
3.4.1數(shù)據(jù)濾波
本系統(tǒng)的數(shù)據(jù)濾波采用基于均方誤差的自適應加權(quán)濾 波。此方法主要使用徉1時刻得到的濾波器參數(shù),調(diào)節(jié) 上時刻的濾波器參數(shù),以適應信號和噪聲未知的或隨時間變 化的均方誤差,實現(xiàn)均方誤差,實現(xiàn)濾波,核心代碼如下:
for k = M : itr
x = xn (k : -1 : k-M+1); 〃濾波器M個抽頭的輸入
y = W ( : , k-1) ?*x; 〃濾波器的輸出
en (k) = dn (k) - y ; 〃第上次這代的誤差
W (:, k) =W ( : , k-1) +2*mu*en (k) *x ;
〃濾波器權(quán)值計算
End
3.4.2時間軸對齊
時間軸對齊采用插值時基法。該方法的核心在于逼近函 數(shù)的構(gòu)造,利用該函數(shù)將不同的數(shù)據(jù)對準到標準時基。該方 法需要選取標準時基,由于溫度數(shù)據(jù)對于風險值貢獻, 故選取溫度數(shù)據(jù)作為標準時基。其余數(shù)據(jù)采用二乘法進行擬合作為逼近函數(shù),在標準時基處進行插值,得到對準后數(shù)據(jù)。
3.4.3特征提取
考慮到本系統(tǒng)數(shù)據(jù)庫為異構(gòu)數(shù)據(jù)庫,數(shù)據(jù)具有多維性, 利用 PC A (Principal Component Analysis,主成分分析)進 行特征提取。求解目標矩陣中每一列的特征平均值,用各列 減去該列的特征平均值,計算得到該矩陣的特征協(xié)方差矩陣。 計算該協(xié)方差矩陣的特征值和特征向量,并對其特征值進行 遞減排序。提取前上個特征值和特征向量進行回退,得到降 維后的特征矩陣,核心代碼如下:
//求解特征值和特征向量
selteigen values, sel€eigen_vectors = np.linalg.eig (covariance)
//對特征值進行遞減排序
idx = selfleigen values.argsort () [: : -1]
eigenvalues = sel£eigen_values[idx][: selflk]
eigenvectors = sel£eigen_vectors[: , idx][: , : selfk]
//將數(shù)據(jù)集X映射至zhi定的低維空間
X transfbrmed = X.dot (eigenvectors)
X transfbrmed = X.dot (eigenvectors)
3.4.4風險概率計算
本系統(tǒng)的數(shù)據(jù)具有更新快、規(guī)模大的特點,樸素貝葉斯 算法對于大規(guī)模的增量數(shù)據(jù)處理效率較高,故選取該方法進 行風險概率計算。采用.632自助法選取訓練集,假設特征之 間相互獨立,學習從輸入到輸出的聯(lián)合概率分布,再基于此 模型,輸入x求出使得后驗概率的輸出y,將>作為火 災風險值。核心偽代碼如下:
def trainNBO (trainMatrix, trainCategory):
numTrainDocs = len (trainMatrix)
numWords = len (trainMatrix[O])
pAbusive = sum (trainCategory) /float (numTrainDocs) pONum = zeros (numWords)
plNum = zeros (numWords)
pODenom = 0.0
plDenom = 0.0
fori in range (numTrainDocs ):
if trainCategory [i] ==1 :
pl Num += trainMatrix[i]
p 1 Denom += sum (trainMatrix[i])
else :
pONum += trainMatrix[i]
pODenom += sum (trainMatrix[i])
plVect = plNum/pl Denom
pOVect = pONum/pODenom
return pOVect, plVect, pAbusive
4系統(tǒng)測試
為測試所設計系統(tǒng)的正確性和實時性,分別在正常情況 和模擬火災情況兩種情況下對系統(tǒng)進行測試。
正常情況:將系統(tǒng)置于木箱中,模擬無煙、室溫的室內(nèi) 環(huán)境,測試結(jié)果??梢钥闯觯敐穸?、溫度、 煙霧均處于正常狀態(tài),經(jīng)融合所得的風險值(右側(cè)儀表盤) 也遠低于報警線。此處,報警線為35,該數(shù)值利用已有數(shù)據(jù) 經(jīng)過訓練得出。模擬火災情況:將系統(tǒng)置于同一木箱中,人工向木箱加 入煙霧,并提高木箱的溫度,。
可以看出濕度為百分之20RH,低于環(huán)境平均水平, 溫度為60 °C,高于43 °C,煙霧電壓為2.75 V,低于2.77 V, 單個數(shù)據(jù)均處于危險范圍內(nèi)。經(jīng)融合所得的風險值為40高 于初始設定的閾值35,系統(tǒng)報警。此外,可以在該系統(tǒng)中查 看歷史數(shù)據(jù),在模擬火災情況下濕度、溫度、煙霧值均有明 顯跳變,證明本文所設計的系統(tǒng)的實時性良好。
5安科瑞智慧消防監(jiān)控云平臺介紹與選型
5.1平臺簡介
安科瑞智慧消防綜合管理云平臺基于物聯(lián)網(wǎng)、大數(shù)據(jù)、云計算等現(xiàn)代信息技術(shù),將分散的火災自動報警設備、電氣火災監(jiān)控設備、智慧煙感探測器、智慧消防用水等設備連接形成網(wǎng)絡,并對這些設備的狀態(tài)進行智能化感知、識別、定位,實時動態(tài)采集消防信息,通過云平臺進行數(shù)據(jù)分析、挖掘和趨勢分析,幫助實現(xiàn)科學預警火災、網(wǎng)格化管理、落實多元責任監(jiān)管等目標。填bu了原先針對“九小場所”和?;飞a(chǎn)企業(yè)無法有效監(jiān)控的空白,適應于所有公建和民建,實現(xiàn)了無人化值守智慧消防,實現(xiàn)智慧消防“自動化”、“智能化”、“系統(tǒng)化”、用電管理的實際需求。
從火災預防,到火情報警,再到控制聯(lián)動,在統(tǒng)一的系統(tǒng)大平臺內(nèi)運行,用戶、安保人員、監(jiān)管單位都能夠通過平臺直觀地看到每一棟建筑物中各類消防設備和傳感器的運行狀況,并能夠在出現(xiàn)細節(jié)隱患、發(fā)生火情等緊急和非緊急情況下,在幾秒時間內(nèi),相關報警和事件信息通過手機短信、語音電話、郵件提醒和APP推送等手段,就迅速能夠迅速通知到達相關人員。同時,通過自動消防滅火控制裝置啟動自動滅火設備和消防聯(lián)動控制設備,有效解決用電單位電氣線纜老舊,小微企業(yè)無專業(yè)電工、肉眼無法直觀系統(tǒng)即時排查電氣隱患、隱蔽工程隱患檢查難等難題,及時排除隱患,安科瑞智慧消防監(jiān)控云平臺結(jié)構(gòu)如下圖所示:
5.2平臺功能
(1) 平臺登陸
用戶登錄成功之后進入首頁,如圖所示。主要展示的內(nèi)容有:項目概況、設備狀態(tài)、設備分類、設備報警信息、報警分類、報警統(tǒng)計、設備臺賬信息等。其中百du地圖可以選配成BIM建筑模型,任何傳感器報警時可以在BIM模型中預警顯示。
(2) 實時監(jiān)控
智慧用電子系統(tǒng)可接入電氣火災、故障電弧、電氣火災主機、滅弧式保護器探測和母排無線測溫探測等等各類子系統(tǒng),實現(xiàn)對相關消防系統(tǒng)設備的信息實時監(jiān)控,一且發(fā)現(xiàn)監(jiān)測數(shù)劇 超過風險閾值,APP、電話報警統(tǒng)統(tǒng)上陣,通過設備的標簽、地理位置定位,快速通知,快速處置
(3) 隱患管理
隱患管理包括隱患巡查、隱患處理、和隱患記錄,隱患巡查的目的是為了系統(tǒng)在產(chǎn)生報警或隱患后,系統(tǒng)可以針對工程人員派發(fā)工單,處理完以后工程人員能夠在系統(tǒng)中填寫相關工單任務記錄,以供歷史查詢。隱患統(tǒng)計支持對項目進行日、月、季、年的維度查詢,并能夠自定義時間查詢,將項目下隱患以曲線,圖表的形式展現(xiàn)
(4) 統(tǒng)計分析
統(tǒng)計分析包括數(shù)據(jù)匯總和分析報告,數(shù)據(jù)匯總以曲線和表格形式顯示各個月份的報警和故障記錄,同時顯示控制日志,支持按照控制類和參數(shù)設置類分別顯示,也可以按照操作是否成功分別顯示,包括此次控制的操作情況,項目名稱,設備信息以及對應的操作時間等;分析報告包括總體概況和設備回路特征分析。
(5) 運維管理
根據(jù)運維調(diào)度管理的需要,智能調(diào)度技術(shù)人員可以分為不同角色,系統(tǒng)支持zhi定巡檢計劃和巡檢日歷,可支持巡檢人員使用手機NFC芯片巡檢打卡的功能。
(6) 手機APP功能
手機APP軟件具有IOS版本和安卓版本,并與電腦終端系統(tǒng)的數(shù)據(jù)同步,能展示剩余電流、溫度、電壓、電流等電氣參數(shù)的實時監(jiān)測數(shù)據(jù)及變化曲線、歷史數(shù)據(jù)與變化曲線;短路、斷線、漏電、超溫、過壓、欠壓、過流等電氣故障實時報警數(shù)據(jù)等;能實時顯示項目地理位置、未排除隱患數(shù)、未處理巡檢數(shù)等;通過APP消息推送的方式提醒用戶實時報警信息;可以實現(xiàn)遠程復位、遠程分閘功能;可以對所有現(xiàn)場探測器進行遠程參數(shù)設定及修改;可以對所有現(xiàn)場探測器的遠程控制記錄進行查詢;
5.3配置
5.3.1平臺服務器:建議按照我方配置購買,或者客戶自己租用阿里云資源。
硬件配置清單:(如申請阿里云可忽略)
5.3.2系統(tǒng)現(xiàn)場硬件配置清單:
注:以下配置為針對1個回路選型,其中剩余電流互感器應根據(jù)現(xiàn)場回路電流大
5.4產(chǎn)品選型
電氣火災監(jiān)控探測器
6結(jié)論
本文設計了一種基于窄帶物聯(lián)網(wǎng)(NB-IoT)的智慧消防 系統(tǒng)。本系統(tǒng)使用NB-IoT將多種數(shù)據(jù)傳輸至云端服務器, 通過對采集到的數(shù)據(jù)融合處理,從而實現(xiàn)實時監(jiān)管和達到協(xié) 助決策的目的,并解決了傳統(tǒng)消防系統(tǒng)部署繁瑣、功耗過高、 難于監(jiān)管、聯(lián)動匱乏等問題。
注:本文通訊作者為劉紫燕。
參考文獻
[1] 曾彥鈞,李越,東 文,許 萍,吳先鵬,劉紫燕 .基于NB-IoT和STM32的數(shù)據(jù)融合智慧消防系統(tǒng)設計.
[2] 曹元軍,朱艷,邵明鼎.基于大型樓宇物聯(lián)網(wǎng)與互聯(lián)網(wǎng)融合的智 慧消防系統(tǒng)[J].工程建設與設計,2017 (17): 97-99.
[3] 李卿,董淑敏.基于無線傳感器網(wǎng)絡的消防報警系統(tǒng)卩].電子設 計工程,2016, 24 (18): 119-122.
[4] 安科瑞企業(yè)微電網(wǎng)設計與應用手冊,2020.06版.
作者簡介:劉細鳳,女,安科瑞電氣股份有限公司